Solar Pump Inverter

User Manual

JNP2K2L-V6 JNP3KL-V6 JNP3K7L-V6 JNP4KL-V6

JNP4KL-V6-EN-V1.0

The copyright belong to Supplier

This document involves the proprietary and confidential information about Solar Pump Inverter of Supplier It strictly prohibited to disclose the document by duplicating, photocopying, publishing online and in other forms without Supplier's permission. Supplier reserves the right to change details in this publication without notice.

Preface

Manual Instruction

This manual describes the transportation, installation, operation, maintenance and troubleshooting of the following JNP inverters:

- JNP2K2L-V6
- JNP3KL-V6
- JNP3K7L-V6
- JNP4KL-V6

For the convenience of the following description, "JNP2K2L-V6, JNP3KL-V6, JNP3K7L-V6, JNP4KL-V6" is short for JNPxL-V6, "Solar Pump Inverter" is short for inverter in the following content. The inverter model shall be pointed specially, when introduce the information about each model in details.

Target Reader

This manual applies to the professional engineering and technical person who is responsible for installing and operating of inverter and LCD panel.

Use the Manual

Please read this manual carefully before installing and operating inverter. Please keep this manual well for operation and maintenance in future.

The manual content would be constantly updated and revised, but it unavoidably has slightly discrepancies or errors with real inverter, please kind prevail if user purchases our inverter.

Symbol Used

The following safety symbols may be used in this manual, and the meanings

are shown in below.

Safety Symbol	Meaning	
\wedge	Means that it may lead to serious accident of injuries, if	
<mark>∕!</mark> Danger!	safety warning is ignored.	
\wedge	Means that it may lead to serious accident of injuries,	
✓ Warning!	equipment serious damage or main business	
	interruption, if safety warning is ignored.	
$\mathbf{\Lambda}$	Means that it may lead to moderate accident of injuries,	
Notice!	equipment moderate damage or part of the business	
	interruption, if safety warning is ignored.	
Note!	Means that the content is additional information.	

Inverter related symbols:

Symb	Meaning
ol	
	Direct current (DC).
\langle	Alternating current (AC).
	Protective grounding .
Í	Refer to relevant instructions.
X	Can not discard inverter together with domestic garbage .
Â	Beware of dangerous high-voltage.
A	Should wait for 5 minutes after inverter and PV panel are disconnected, then inverter only can be touched.
^	Beware of hot surface.
<u></u>	The inverter temperature can exceed 60 $^\circ\!\mathrm{C}$ during operation. Please don't
	touch the surface to avoid scald.
()	CE certification marks. It means that inverter complies with the
CC	requirement of CE certification.

CONTENT

PREFACE	
MANUAL INSTRUCTION	
Target Reader	
Use the Manual	
Symbol Used	
1 SAFETY INSTRUCTIONS	9
2 PRODUCTION INTRODUCTION	
2.1 Solar Pump Inverter Introduction	14
2.2 Product's Introduction	
2.2.1 Appearance	
2.2.2 Production Dimensions	
2.2.3 Product Name	
3 INVERTER UNPACKING	
3.1 UNPACKING CHECK	
3.2 IDENTIFY INVERTER	
4 INSTALLATION PROCEDURE	23
4.1 PREPARE INSTALLATION TOOLS	23
4.2 INSTALLATION STEPS	23
5 INSTALLATION	25
5.1 INSTALLATION SITE REQUIRED	

	5.2 INSTALLATION DIRECTION	26
	5.3 INSTALLATION OF INVERTER	27
6	ELECTRICAL CONNECTION	31
	6.1 CONNECTING TERMINALS OF INVERTER	32
	6.2 SCHEMATIC DIAGRAM OF ELECTRICAL CONNECTION	33
	6.3 CABLE SELECTION	34
	6.4 ELECTRICAL CONNECTION ON AC INPUT SIDE	34
	6.5 DC INPUT SIDE ELECTRICAL CONNECTION	37
	6.6.1 Single phase pump description	41
	6.6.3AC output side electrical connection	44
	6.7 WATER LEVEL SENSOR CONNECTION	45
	6.7.1 Water level sensor interface define	46
	6.7.2 Water level sensor connection	47
	6.8 COMMUNICATION CONNECTION	50
	6.8.1 RS485 Communication	50
	6.8.2 GPRS Communication	52
	6.9 DISASSEMBLING	52
	6.9.1Safety Instruction	52
	6.9.2 Mounting and dismounting of cover panel	52
7	COMMISSIONING	54
	7.1 VERIFY BEFORE COMMISSIONING	. 54
	7.2 Inverter Commissioning	54
	7.3 STOP FREQUENCY SETTING	57
8	LCD PANEL OPERATING INSTRUCTIONS	59
	8.1 INVERTER LCD DISPLAY	. 59

8.1.1 LED Indic	ator Direction	59
8.1.2 Description	on of Buttons	60
8.1.3 LCD Displ	lay Interface Overview	61
8.2 INITIAL OPERAT	IONAL INTERFACE	62
8.3 System param	ETER QUERY AND SETTING	64
8.3.1 Query inf	formation item description	64
8.3.1.2 Basic In	nformation	65
8.3.1.4 Statisti	c Information	67
8.3.4 Paramete	er Setting	78
8.4 Malfunctio	n Description	81
•		
9 MALFUNCTION A	ND TROUBLESHOOTING	84
9 MALFUNCTION A 9.1 TROUBLESHOOT	ND TROUBLESHOOTING	 84
9 MALFUNCTION A 9.1 TROUBLESHOOT 9.2 MAINTENANCE	ND TROUBLESHOOTING	
9 MALFUNCTION A 9.1 TROUBLESHOOT 9.2 MAINTENANCE. 9.3 CONTACT CUSTO	IND TROUBLESHOOTING	
9 MALFUNCTION A 9.1 TROUBLESHOOT 9.2 MAINTENANCE 9.3 CONTACT CUSTO 10 APPENDIX A	ND TROUBLESHOOTING	
 9 MALFUNCTION A 9.1 TROUBLESHOOT 9.2 MAINTENANCE 9.3 CONTACT CUSTO 10 APPENDIX A 11 APPENDIX B 	IND TROUBLESHOOTING	84
 9 MALFUNCTION A 9.1 TROUBLESHOOT 9.2 MAINTENANCE 9.3 CONTACT CUSTO 10 APPENDIX A 11 APPENDIX B 11.1 QUALITY ASSU 	IND TROUBLESHOOTING	84

1 Safety Instructions

For the electrical and electronics equipment, safety relates to the whole process of installation, commissioning, operation and maintenance. Therefore, incorrect use or operation would damage the life and personal security of operating person or the third party, and inverters.

In order to reduce casualties, damage of inverter and other equipment, user or operating person should strictly abide by all the safety information tips of danger, warning and notice which are in the process of operating and maintaining.

Warning !

All the installation and operation of Solar Pump Inverter must be done by professional and technical person. Professional and technical person need:

- Received special training.
- Read this manual carefully and know the operation safety matters. Any damage caused by improper installation or operation will be beyond the warranty scope.

Before installation

Notice !

User should check the inverter if there is any damage during transportation. Please contact supplier or transportation company immediately if some problems of inverter are found.

Installing

Ensure inverter does not have electrical connection with power before installation.

\wedge

Danger !

The solar cell arrays should be covered with opaque materials when installing the PV arrays during the day, otherwise the solar cell arrays will generate high voltage, causing person casualties.

Electrical connections

Ensure that the solar cell array should be covered by light tight materials, before electrical connecting, otherwise, the solar cell array would produce high voltage under the sun to cause casualties.

Warning!

- All the operation and wiring work should be operated by professional electrical or mechanical engineer.
- Please do not switch on any breaker before all equipment is not fully connected well.

Warning!

If inverter damage caused by the following circumstances will be beyond the warranty scope.

- Ensure DC max. short-circuit current being in inverter allowable range when configure PV arrays, otherwise, may cause non-recoverable damage.
- Ensure that the open circuit voltage (Voc for short) of JNPxH-V5 shall not exceed 880V, otherwise, inverter may be caused non-recoverable damage.

Warning!

- It would affect the inverter performance and may cause inverter damage if the installation environment is improperly.
- Don't install the inverter in inflammable, explosive place or inflammable, explosive materials storage place.
- Don't install the inverter in place where is vulnerable to lightning strike.
- Don't install the inverter in place where have heavy salt fog.
- When running the inverter, please ensure good ventilation.
- Inverter should be installed erectly, and ensure the heat sink, fans are without shelter.

- All electrical installation must comply with local and national electrical installation standards
- In order to ensure safe running, proper grounding, using appropriate conductor size and providing short circuit protection are required.
- Connection cable must select suitable specification, firm connection and good insulation.

Running

Danger !

- When the AC side of the inverter is running with AC load, the DC connection cannot be directly disconnected. Firstly, make sure that the inverter is shut down and there is no AC output. Make sure there is no voltage between the AC input side and the DC input side, then the AC and DC input side can be disconnected.
- Please don't plug any connector when inverter is charged with power.
- Please don't open the cover plate when inverter is charged with power.

Notice!

Only LCD display screen and DC switches can be touched when the inverter is running,

the heating devices (such as radiator, etc.) should not be touched to avoid scald.

Maintenance

- Maintenance should be done by professional maintenance technical person.
- Before maintenance, make sure to disconnect the electrical connection on the input side of inverter, wait at least 5 minutes, Measure DC side and AC side voltage of inverter with voltage meter, Make sure to operate without voltage on both DC and AC sides

2 Production Introduction

2.1 Solar Pump Inverter Introduction

Solar pump system is different from traditional AC pumping system, which takes use of solar cells to convert solar energy into electricity.

It consists of 4 parts: PV modules, Solar Pump Inverter, AC pump and water storage device. Solar Pump Inverter converts DC power produced by PV module into AC power required by the pump motor. A microprocessor inside continuously monitor available energy levels and adjust pump speed, matching energy required to energy available. The JNPxH series solar pump inverters increase AC input supplement function, on basis of traditional Solar pump inverter. In the case of insufficient PV energy, the AC input energy can be supplemented according to the demand to ensure the normal water supply of users at night or cloudy days. This enables the system to operate under varying solar isolation levels, and provide water throughout the day and through different seasons. The solar Pump Inverter utilize a high efficiency MPPT algorithm to maximize power harvested from PV module.

Warning!

Inverter can't be connected with the PV array, which positive or negative is grounded!

Figure2-1 Solar pumping application system

Table2-1	Solar	pumpina	application	system list
100102 1	Colui	pamping	upphoution	by brown not

No.	Name	Description
А	PV array	Monocrystalline silicon, Polycrystalline silicon.
В	Grid/Diesel	three-phase alternating-current supply
	generator	
		JNP2K2H-V6、JNP3KH-V6、JNP3K7H-V6、
С	Solar pump inverter	JNP4KH-V6、JNP5K5H-V6、JNP7K5H-V6
D	AC pump	Single phase or three phase AC pump.
E	Water storage	Can be the reservoir, fields etc.
	device	

When the solar pump system is configured, please ensure that the maximum

power point voltage Vmp of the PV array is basically equal to or close to the AC

rectifier voltage , which means Vmp≈1.414*U_{line}. For JNPxH serie inverter, AC input must be three phase, U_{line} is voltage between any two lines. For example, JNPxH serie inverter, the Vmp of single solar panel is 30V, 18pcs solar panels are in serie. The Vmp=30*18=540V≈1.414*380=537.3V If the configuration of PV array is not appropriate, when PV energy and AC energy are connected into inverter at the same time, PV energy cannot be maximized

2.2 Product's Introduction

2.2.1 Appearance

Figure2-2 Appearance of Solar Pump Inverter

Table2-2 Inverter appearance	information	table
------------------------------	-------------	-------

No.	Name	Introductions
1	LCD display	Man-machine interface, you can check the inverter
	screen	operating information through LCD display screen,

		also can set some function and parameters of inverter.		
2	amphenol	Contains 2 sets of DC input (PV+, PV-) terminals, AC		
	connector	input terminals (AC IN), output (MOTOR) terminals,		
		SENSOR terminals and communication (COM)		
		terminals.		
3	Machine serial	The serial number of the inverter, should be provided		
	No.	during after-sales service		
4	Nameplate	The basic parameters of the inverter are listed on the		
		name plate		
5	Radiator	Help the machine to dissipate heat. The temperature		
		of the inverter is high during operation. DO NOT		
		touch it!		
6	hangers	Used to mount and hang the inverter to the hanging		
		plate.		

2.2.2 Production Dimensions

Figure 2-3 Dimension drawing of Solar Pump Inverter (unit : mm)

Model	Width(mm)	Height(mm)	Depth(mm)	Net weight (kg)
JNP2K2L-V6	420	310	200	11.8
JNP3KL-V6	420	310	200	11.8
JNP3K7L-V6	420	310	200	11.8
JNP4KL-V6	420	310	200	11.8

Table2-3 Inverter dimension table

2.2.3 Product Name

The Naming of product, take JNP3K7L-V6 for example:

3 Inverter Unpacking

3.1 Unpacking Check

The product has been tested and checked carefully before transportation, but damage may be caused during transportation, therefore, the product should also be checked carefully before installation.

- Please check whether inverter outer packing is in good condition;
- After unpacking, please check whether the equipment is in good condition;
- According to the packing list to check whether all the parts is correct and in good condition.

If any damage is found, please contact supplier or the transportation company. Please keep well the photos taken at the damaged parts and we'll provide you with best and fastest services.

Supplier supply the standard inverter and commonly used accessories as below:

Figure3-1 Inverter and standard fittings

Note ! Photos are for reference only, please adhere to the original product!

Table3-1 Inverter and fittings table

No.	Description	Status
1	Pump inverter	Standard
2	Photovoltaic input connector (MC4	Standard

	terminal)		
3	Power grid input connector	Standard	
	(3-core connector)		
4	Inverter output connector (4-core	Standard	
4	connector)	Standard	
5	Expansion bolt(M6*60)	Standard	
6	certificate of soundness	Standard	
7	specification	Standard	
8	container loading list	Standard	
9	Ring tool	Standard	
10	Water level sensor (Type A)	Optional	
11	Water level sensor (Type B)	Optional	
12	hanging panel	Standard	
40	Sensor connector and	Optional	
13	communication connector		

3.2 Identify Inverter

The nameplate in the side of inverter, and it shows the inverter model, main parameters and certificate mark.

Figure3-2 Inverter nameplate

Table3-2 Nameplate information table

NO.	Description
1	Name and model of inverter.
2	Inverter parameter information
3	SERVICE TAG

4 Installation Procedure

4.1 Prepare Installation Tools

The following tools will be needed during inverter installation and wire connection. You also can choose the right tools according to your own experience.

Sketch map	Name	Recommend specification	Function	
	Wire crimpers	M2.5~M8	For crimping of cold terminals.	
T	Electric drill	Φ8	Used for inverter installation plate fixed hole drilling.	
	monkey wrench	/	For fixing nuts	
	Inner hexagon spanner	5#	Used for disassembly and assembly of inverter cover panel.	

Table4-1 Installation tools list

4.2 Installation Steps

Tools ready, follow these steps to install.

Table4-2 Installation process

Installation	Installation instruction	Reference
steps		chapters
	Before installation, check whether the inverter is	
	in good condition;	
	Whether the product fittings are complete	3.1
1	Whether the installation tools and spare parts are	4.1
	complete	
	Whether the installation environment meets the	1
	requirements	
2	Read the manual, especially the "Safety	1
	Instructions"	
3	Choose the best installation location	5.1
	Installation	5.3
	Electrical connection	6
	Select cables	6.3
4	AC side wire connection	6.4
	DC side wire connection	6.5
	Sensor wire connection	6.6
	485 communication wire connection	6.7
5	Commissioning	7
6	Configuration parameter	8
7	Faults	9

5 Installation

5.1 Installation Site Required

Inverter installation site environment has very important influence to the safe operation, the performance and life of the inverter. Choose the right installation site before install the inverter.

- All installation must comply with local standards.
- Do not install the inverter at a flammable or explosive place or a place where the flammable or explosive materials are stored.
- Do not install the inverter in a place where there is a risk of explosion.
- Do not install the inverter in places where the inverter is vulnerable to lightning strike.
- Do not install the inverter in a higher salt spray environment.
- Inverter installation site must be in good ventilation, do not install the inverter in the closed case, otherwise the inverter will not work properly.
- Inverter protection level is IP65, can be installed outdoor, when the inverter is installed outdoor, should be installed as far as possible in the eaves or other have the shadow place, avoiding direct sunlight, rain and snow.
- Inverter is installed indoor, keep away from windows, avoiding lightning
- The installation place selected should be solid enough to support the inverter weight for a long period.
- The site for inverter installation must be clean and the ambient temperature must be maintained within -25 to +60 °C.
- Inverter installation site relative humidity should not be more than 95%, water vapor may corrode inverter, and damage the internal components.
- The inverter must be installed in a place convenient for observation and

maintenance.

• Don't install the inverter in living area, the inverter will produce some noise when running, influence daily life.

5.2 Installation Direction

- The inverter should be installed vertically or titled backwards with a maximum angle of 10°.
- Do not install inverter tilted forwards.
- Never install the inverter horizontally.

Figure 5-1 Installation directions

- The installation height of inverter should be convenient for operation and reading out of the LCD displayed information.
- Do not install the inverter in a place where children can touch.
- The inverter uses air cooling mode and the installation site selected should ensure the minimum installation spacing between the inverter and the fixed object and the nearby inverters to ensure an good ventilation. And in front of the inverter need to keep enough space, is convenient to check the LCD display information.

Figure 5-2 Minimum spacing of adjacent installations

Table5-1 Minimum spacing dimension

Direction	Minimum spacing
Above	100cm
Below	100cm
Sides	100cm
Front	100cm

5.3 Installation of Inverter

Note!

Do not use jackbolts or screws to install inverters on rocks or panels.

Note!

- Fix the inverter on the rock or panel with the toggle bolt or screw is not permitted.
- Supplier would provide the bolt which suitable for the installation on the concrete wall.
- If the inverter is fixed on the wooden wall, please choose suitable bolt to finish the installation, the bolt length should be enough and penetrate the 1/2 depth of the walls.
- Step 1: Drill holes at selected installation locations according to the size and shape of the sheet metal installed in the attachment. At least two horizontal holes and two vertical holes shall be used for drilling. The horizontal hole spacing is 256mm, and the vertical hole spacing is 165mm. It is recommended that the drilling diameter be 8+1/-0 and the depth be 60+5/-0.

Fig. 5-3 Bitmap of the JNPXL mounting hole

Step 2: Use expansion bolts to fix the mounting sheet metal on the wall. The tightening torque of the expansion bolts is 35Nm.

Fig. 5-4 Installation of expansion bolts

Step 3: Lock the expansion bolt until it is against the wall.

Fig. 5-5 Installation completion diagram of expansion bolt

Step 4: Hang the installation lug on the back of the inverter to the installation

sheet metal, until the inverter has been firmly installed on the hanging plate, before releasing the inverter.

Figure 5-6 Installation of JNPXL

Figure 5-7. Renderings of finished installation

6 Electrical Connection

The electrical connection can be carried out when the mechanical installation of inverter is completed. The following operation specification must be followed when making electrical connection.

Warning!

- All the electrical connection must meet local electrical connection standard.
- Only qualified electrical personnel can perform the wiring installation work.
- Incorrect wiring operation may cause operating casualties or equipment damage permanently.
- Ensure that there is no electricity in DC side before the electrical connection.
- Grounding correctly, using proper conductor and taking necessary Short-circuit protection to ensure the safe operation of inverter.
- Don't switch on any breaker before all the electrical connection are finished.

6.1 Connecting Terminals of Inverter

Input and output connection terminals are at the bottom of the inverter, including DC input terminal, AC input terminal, inverter output terminal, communication terminal, water level sensor terminal, as shown in the figure below.

Figure6-1 External connection terminals of inverter

Terminals	Description	
AC IN	AC input connector.	
PV	PV array DC input terminals, including PV1+, PV1-, PV2+, PV2	
MOTOR	Output terminal, connect with AC pump, including U,V,W.	
SENSOR	Water level sensor signal input terminal (optional)	
СОМ	RS485 or GPRS communication interface (optional)	
Ē	Grounding terminal(Grounding screw on the right side of inverter	
	case)	

6.2 Schematic Diagram of Electrical Connection

Figure 6-2 is the schematic diagram of electrical connection among PV arrays, Solar Pump Inverter and three phase AC pump. Water level sensor and communication interface shall be connected if needed.

C. Water pump

Figure6-2 Electrical connection diagram of Solar Pump Inverter

|--|

No.	Equipment name	Description	
А	PV array	The max. Voc of each string is 880V.	
В	Power grid or	Power grid, diesel generator or other AC input	
	generator	sources.	
С	Pump	Three-phase AC water pump.	
D	RS485	Optional, can be purchased from Supplier	
	Communication		

	module	
Е	Water level sensor	Optional, for Dry or Overflow protection.
F	GPRS module	Optional, Use for GPRS communication.

6.3 Cable Selection

Please select cable according to the following table.

Table 6-3 Specification of Cables for Electrical Connection

Inverter type number	Wire Specification (AWG)				
	PV+、PV-	R, S, T	PE	U, V, W	
JNP2K2L-V6	14-12	14-12	12	12	
JNP3KL-V6	12-10	12-10	12	10	
JNP3K7L-V6	12-10	12-10	12	10	
JNP4KL-V6	12-10	12-10	12	10	

6.4 Electrical connection on AC input side

It's forbidden to connect several inverters in parallel to one set of pump!

\wedge

Do not connect the AC input and inverter output wrong, otherwise it will cause irreversible

damage to the inverter.

Notice!

Ensure that all cables have no charge before electrical operation!

Step 1: Connect the power grid cable with the accessory "power grid input connector" in the packaging box of the machine in the way of wiring. L connected with fire line, N connected with zero line, PE grounding.

Step 2: power input connector will be inserted inverter "AC" IN port, and tighten. As shown in the figure below:

Figure 6-3 ACIN connector terminal signal

Table 6-4 Description of connecting pins for water level sensors

Port (Sensor) connector pin	explain
Pin 1	Т
Pin 2	R
Pin 3	PE

Figure 6-4 ACIN connector line sequence nameplate schematic

Figure6-5 Schematic diagram of AC input conductor connection
Danger !

When the input AC terminal is connected with the inverter, the circuit breaker at the AC input side shall be disconnected, otherwise the AC input will generate dangerous voltage, causing personal injury and death. Do not operate wiring by non professionals.

Please make sure the AC input and AC output wiring is correct, Do not connect the input and output reversely, otherwise the inverter will be damaged. Please make sure that three phase AC input the R, S, T and grounding are correctly connected to the Corresponding terminals. Do not connect the AC input R, S, T to the grounding terminal wrongly. Otherwise, it will damage inverter.

Note!

The phase sequence between AC pump and inverter must be same, otherwise, it shall lead to less output or without water. Whether Phase sequence is corresponding or not should be tested when the pump system trial run for the first time.

For single phase pump, there is no sequence required after start capacitors are moved out.

6.5 DC input side electrical connection

Danger !

When carrying out connection between PV array and inverter, the PV array should be covered with opaque materials and the DC-SWITCH should be disconnected, otherwise, the PV array may generate dangerous voltage, cause

casualty. The Non-professionals do not make the connection operation.

Before connecting PV array to the inverter, ensure the earth impedance between PV array and ground is not less than 1Mohm.

Note !

- If there is more strings PV modules in parallel, each string PV module should be with the same model, the same number of PV modules, the same inclination angle, the same azimuth angle, and the same cross-sectional area of the connecting wires.
- Inspect every system carefully before installation.

Step 1: Follow the following steps to connect the DC side connector lead.

operating	
instructions	Operation diagram
1. Loosen the fastening nut of the connector.	

Step 2: Make sure the DC side circuit breaker of the system is disconnected. Step 3: check to ensure that the pv group series connection cable on the correct polarity.

Step 4: the positive and negative connector respectively inserted into the bottom of the corresponding terminal inverter.

Figure6-6 Diagram of DC conductor connection

Make sure the Positive and Negative poles connection of PV array and Inverter are correct!

6.6AC output side electrical connection

notice !

Do not connect multiple inverters to a single water pump.

danger!

Ensure that all cables are not live before performing electrical operation.

6.6.1 Single phase pump description

Single phase pump is widely used in household and small power water delivery system with its advantages of simple structure, low cost, low noise, easy access to power, etc. Usually, single phase pump consists of a main winding (running winding), a secondary winding (starting winding), and a starting capacitor.

Note: Some single phase pump consists of two capacitors, one starting capacitor and one running capacitor. In the connection of single phase pump, this two capacitors are always connected together, after that, the connection is same as one capacitor pump. No further description here.

Figure 6-7 Diagram of single phase pump inner winding While using our JNPxL-V5 series single phase solar pump inverter, the capacitor of single phase pump needs to be removed. Then draw a wire at the common end of the main and secondary windings, draw two wires at the other end of the main and secondary windings. Then connect this three wires and one ground wire to the AC connector of inverter, as shown below:

Figure 6-8 Schematic diagram of removal for single phase pump

6.6.2 Capacitor removal example

Step 1: Put the single pump on the open and hard ground.

Step 3: After remove end cover, find the terminal connected to the capacitor lead, loosen the fastening nut and remove the original wire of capacitor and motor.

Step 2: Remove 4 fixing screws from end cover plate with cross screwdriver and remove end cover plate.

Step 4: Prepare a four-core motor extension wire, fix the ground wire in the " $\stackrel{-}{=}$ " position, connect the other three wires to the three terminals and fix them with nuts. Finally, cover it.

6.6.3AC output side electrical connection

Step 1: Connect the water pump cable with the accessory "inverter output connector" in the machine packing box, as shown in Figure 6-5. U\V\W are connected to the three fire lines of the three-phase power grid respectively and PE is grounded.

Step 2: insert inverter output connector into the inverter "MOTOR" port, and tighten. As shown in the figure below:

Figure 6-9 Motor connector terminal schematic

Table 6 4 Deserie	ntion of a	onnootina	ning for	water		
		onnecting	pills ior	water	level	26112012

Port (Sensor) connector pin	explain
Pin 1	V
Pin2	W
Pin3	U
Pin4	PE

Figure 6-10 Motor connector line sequence nameplate schematic

Fig. 6-11 Schematic diagram of inverter output wire connection

6.7 Water Level Sensor Connection

Dry protection function: There are two kinds of detection models, automatic and manual. Automatic dry protection is achieved through inverter's software. And manual model need water level sensors to input signal through SENSOR inside Inverter.

Overflow Protection: water level sensors are requested to input signal through SENSOR inside Inverter.

Note!

- The water level sensors' location is designed according to your system situation.
- Water level sensor can be bound in corresponding position on the pipeline connected to the pump. Other method also can be used to ensure the water level sensor is in the right position.
- The installation of water level sensor must be reliable and effective.
- When use water level sensor to achieve function of overflow protection, set "OFF" as "ON", please refer to "8.3.4.3 Key Parameters of the System Set" for detail information.

6.7.1 Water level sensor interface define

The pin of the water level SENSOR connector on the inverter panel is defined as follows:

Fig. 6-12 Schematic diagram of connector terminal of water level sensor

Port (Sensor) connector pin	Water level sensor input signal
Pin 1	Dry the protective pin and connect the
	water level sensor to the black cable of

Table	6-4	Description	of	connecting	pins	for	water	level	sensors
Tuble	0 -	Description	01	conneeting	pino	101	water	10,001	30113013

	the terminal
Pin 2	Overflow protective pin, connect the
	water level sensor to the white cable of
	the terminal

Above three input signal of water level sensors is passive signals, which is matching opening or closing signal of the corresponding water level sensors.

6.7.2 Water level sensor connection

Two kinds of water level sensor you can select as shown below:

Sensor A Sensor B Figure6-13 Water level sensor

Notice!
If you select overflow protection water level sensor, you need to set the value of
"OF-F", the LCD menu "Settings" 📄 "Para Set" 📄 "OF-F" to modify to
"ON". The setting method with reference to "8.3.4.3 Key Parameters of the
System Set".

If you selected water level sensor A, then water sensor installation method is shown below:

dryed high water level sensor. 2. D:Pump outlet, the Installation location of pump dryed low water

level sensor. 3. S about 1-3 m

If you selected water level sensor B, then water sensor installation method is shown below:

Figure6-16 The installation figure of Sensor B

If you choose Water Level Sensor B, please note the following aspects when intall:

- 1. For dry protection, the end with cable of sensor should be upwards;
- 2. For over-flow protection, the end with cable of sensor should be downwards.

6.8 Communication Connection

6.8.1 RS485 Communication

When the inverter communicates with a single machine, the communication between the inverter and the monitoring equipment can be connected through the communication cable. The COM outside the inverter is the remote communication terminal, and the output terminal wire is connected to the monitoring equipment (computer).

Figure6-17 Communication connection terminal

The com part of the machine panel and the water level sensor use the same terminal block, and the pin definitions are shown in the table below:

Pin No signal name		explain
1	А	RS485 communication port A
2	В	RS485 communication port B

Table 6-5 COM terminal pin definition on machine panel

The following diagram guide you to connect a single inverter to monitoring equipment.

Figure6-18 Diagram of single communication wiring

The wiring diagram is schematic diagram, just take HEXIN converting module as an example. If the user choose other converter, need according to the converter's instructions, wiring the inverter's A, B wires to the converter's correct terminal.

Please refer to "**Inverter Management System User Manual**" for the corresponding monitoring software settings, after completing the wire connection.

Note!

- The monitoring software is optional, when choose this function, "Inverter Management System User Manual" can be found from the accompanying CD.
- The inverter is supplied with default address "10".

6.8.2 GPRS Communication

Note: More information about the communication module, please refer to the User and Installation Manual For GPRS.

6.9 Disassembling

6.9.1Safety Instruction

Before disassembling the inverter:

- Turn off the DC switch.
- Waiting for a few minutes till ensure the inverter is uncharged.

Notice !

Electrostatic discharging will cause damage to the inner components of inverter. We

should carry out the antistatic measure before disassembling and assembling.

6.9.2 Mounting and dismounting of cover panel

For maintenance reason, you may need open the cover of inverter, and ensure better

seal performance, please operate according to the following instruction.

- When open the inverter cover, first use a cross screwdriver to remove the grounding screw on the right side of the inverter case, and then use a 5# Allen wrench to screw down the cover plate fixing screws in turn, and install the gasket under the screw. When screwing down, pay attention to prevent the gasket from falling off.
- 2. when cover it back, first use a cross screwdriver to lock the grounding screw on the right side of the inverter case, then screw all the cover screws into the screw holes, use a 5 × Allen wrench, with a torque of $1.8 \pm 0.2N \cdot m$, first lock the diagonal screws, and then lock the other screws in turn.

Figure6-19 Reference picture of Mounting and dismounting

7 Commissioning

7.1 Verify before Commissioning

PV Arrays

The PV array should be checked before operating the inverter, and to ensure that the positive and negative mustn't be misconnect, otherwise, the damage may be caused to the inverter. Make sure that the open-circuit voltage of PV array doesn't exceed the required voltage.

DC Input

Make sure that the DC terminals of the inverter are connected correctly and maintained consistent with the PV array.

AC Input/Output

For single-phase AC input inverter, please ensure that the AC input cable is properly connected to the L and N of the AC access terminal, and do not connect the cable to the PE pin. Ensure that the output end of the inverter is connected correctly, check whether the AC is connected correctly, and the protection ground of the system is connected correctly.

Verify of the water pump motor parameters

Check the electrical parameters on water pump motor nameplate: the rated input voltage and input current frequency, to ensure inverter is matched with the pump.

7.2 Inverter Commissioning

Choose suitable weather, with enough sunshine, and make sure the normal operation of your Solar pump system. Try to ensure that inverter work under high output power, high output frequency as much as possible. Please make sure the following condition before commissioning.

- Ensure that the inverter is connected correctly to the AC motor.
- Ensure that the polarity of PV arrays is correct.
- Ensure that the AC Input L_{\sub} N and GND is correct.
- Check whether the system pipeline is unobstructed or not.
- Switch on the DC-side circuit breakers.

After finishing the above steps, then begin initialization.

According to the pump motor rated current value on the nameplate, setting inverter overload protection value, the method is: modify the "Imotor" value equal to 1.2 times of the motor rated current, the details please refer to chapter **"8.3.2.3 DSP Parameter Settings" "8.3.4 parameters"** settings.

After finishing the above steps, machine shall start operation after long-time pressing the "ON/OFF" key for 3s; check if the Solar pump system works properly or realize suitable head of delivery and flow. Press "ON/OFF" and stop the inverter. Disconnect the DC side input of the PV array, connect the AC input side power supply, and repeat the above operations.

Note!

The inverter has four working modes, which are factory default as "0" :

When the debugging mode is "0", it means that the inverter is in the economic mode. When the photovoltaic power is lower than the grid access power, the grid is connected to ensure the full load operation of the inverter. When the photovoltaic power is greater than the grid exit power point, the grid gradually exits until it completely exits.

When the debugging mode is "1", it means that the inverter is in the reliable mode. When the photovoltaic power becomes weak and cannot maintain the full power operation of the inverter, the power grid is connected to keep the inverter running at full power. When the photovoltaic power can maintain the inverter running at full power, the grid exits.

When the debugging mode "2" is selected, it means that the inverter is in the pure photovoltaic mode, and the power grid cannot be connected, and only photovoltaic energy is used for operation.

When the debugging mode is "4", the inverter is in the motor detection mode, which needs to be modified only for single-phase pump load. After the motor parameter detection is completed, the debugging mode is automatically modified to "0".

The inverter generally defaults to three-phase output. If the pump load is single-phase pump, special parameters of the inverter shall be set as follows:

• When the output is connected to the single-phase pump and the system is powered on, the inverter "parameter setting" interface needs to be entered. The "output selection" of the inverter is modified to "1" (" 0 "represents the three-phase inverter output," 1 "represents the single-phase inverter output). After modification, the inverter must be switched off and powered on again. For specific modification steps, please refer to the chapters of "8.3.2.2 DSP Parameter Setting" and "8.3.4 Parameter Setting".

• After power on and restart, change "Debug mode" to "4".Please refer to the section "8.3.2.2 DSP Parameter Setting" and "8.3.4 Parameter Setting" for specific modification steps.

Long press the "ON/OFF" key ON the inverter panel for 3 seconds, the "RUN" light will always be ON after flashing, the inverter will start to RUN, and the system will work (if the load is single-phase pump running for the first time, select "Yes" after motor parameter detection, and the inverter will start to RUN). At this point, it is necessary to check whether the photovoltaic pump system is working normally and whether it can reach the head and flow of the system .After running for a period of time, press the "ON/OFF" key ON the LCD

panel of the inverter to stop the inverter and turn OFF the "RUN" light. Disconnect the DC input of the PHOTOVOLTAIC array, connect the AC input, and repeat the above operation.

Note!

- Output power of inverter drives the pump working; the pump will stop working while the inverter stops.
- for the first test run, if there is any abnormality, the inverter will report a fault, please refer to "9.1 troubleshooting" section.
- System commissioning, may be abnormal, such as no flow, or flow rate cannot reach the designed value, or even the three phase water pump issued by abnormal sound. Please kindly check below:
 - a) Three-phase AC pump reversal (saying three-phase pump connected wrong), you need to stop and set "M-Mode", please refer to the Chapter "8.3.2.3 DSP Parameter Settings" and "8.3.4 Parameter Settings";
 - b) Output power of PV module is too weak;

7.3 Stop Frequency Setting

Solar pump system for the first time trial run is successful, need to set the system shutdown frequency, as follows.

- Step 1: Ensure the system is running and there has water output. To enter "StopFreq" interface. Please refer to "8.3.2.3 DSP Parameter Settings" "8.3.4 parameters".
- Step 2: To reduce the value of "StopFreq". Reduce 5 each time (every change need to press "ENTER" to confirm). Keep reducing till there just has no water output, and make a small change to just get small water come out, and the value is the very data of "StopFreq".
- Step 3: Exit the "StopFreq" interface.

Finish the debugging.

The set of "StopFreq" can ensure inverter stop working when the output power of PV array is too weak to pump water, which can increase the pump's lifespan.

8 LCD Panel Operating Instructions

8.1 Inverter LCD Display

There are three LED lights, four buttons on the LCD Display, shown in figure 8-1.

Figure8-1 LCD Display

8.1.1 LED Indicator Direction

Table8-1 LED Indicator Direction

LED Indicator	Name	Color	Instructions
POWER	Power light	Green	Light on When power on
RUN	Running light Green Light on		Light on under normal operation
	Foulty light	Red	Light on when error occur, off when fault
FAULI	Faulty light		disappear

Detail Explanation of Indicator

- When inverter is powered on, "POWER" indicator (green) will be lighted.
- Communication fault occurs, "FAULT" indicator flashes rapidly.
- Other outage or shutdown mode occurs, "FAULT" indicator will be lighted,

until fault or status are cleared.

• When invert is running normally, "RUN" indicator will be lighted in green.

8.1.2 Description of Buttons

Table8-2 Buttons Function Table

Buttons	Name	Functions
(AR)	"ON/OEE"	Press once to stop; long time press for
Θ		3s to get it started.
\square	"110"	Page up and increase data. long time
Ð	0F	press for Continuous increase.
\bigcirc	"DOWN"	Page down and decrease data. long
\diamond	DOWN	time press for Continuous reduction.
J	"ENTER"	To choose and confirm.
(⊘+⊙	"DOWN+ENTER"	Return to main interface.

Note!

When inverter is powered on, LCD display background is lighted,

and after 30s normal running, the background light turns off.

8.1.3 LCD Display Interface Overview

Figure8-2 LCD diagram (1)

Figure8-3 LCD diagram (2)

8.2 Initial Operational Interface

Once the inverter power on, the system start to initialize, display the initialization interface:

Figure8-4 System initialize

If the start-stop mode is auto., countdown interface will be display after initialization complete, and when countdown finished, LCD will enter the main interface, inverter will drive water pump. "RUN" indicator light.

Run Waiting 5

Figure8-5 Countdown interface

If the start-stop mode of the system is manual (factory default setting), long press the "ON/OFF" key for 3s, and the inverter will start up and run.

- The default mode of inverter is manual start-stop mode. When inverter power for the first time, it need key-press to start the inverter to drive pump.(Run after long-time press "ON/OFF"), at the same time, manual start-stop mode will change into automatic start-stop mode directly.
- Press "ON/OFF" stop the inverter and it will get started while long-time pressing "ON/OFF", if not do like this, the system won't start.
- The inverter can work at regular intervals, that is, the inverter automatically stops after the set working time. For details, please refer to "8.3.2.1 Timing Shutdown Time Setting" and "8.3.4 Parameter Setting".
- The long button time described in this article is approximately 3 seconds.
- LCD display two lines of characters.

After inverter initializing, main interfaces will be displayed circularly:

Ppv
R_Mode
lpv
Vdc
Pgrid
State_AC
lout
Fout
Run/Stop
D-Mode
0F-F

Figure8-6 Main interface

Main interface display basic running information. Main interface will turn page auto after 10s, or you can turn page through pressing "UP" and "DOWN" button.

JNPxL series inverter with single-phase water pump load is powered on for the first time, the motor parameters will be detected. After passing the detection, the next operation will be carried out according to the LCD operation prompt.

8.3 System parameter query and setting

8.3.1 Query information item description

The query information items include main interface information, operation information, basic information, water pump information, statistical information, and fault information.

All query information items can be queried on the LCD display interface.

"Figure 8-2 LCD menu block diagram 1" lists the locations where all queried information items are located.

The following describes the operation information, basic information, pump information, statistical information, and fault information.

8.3.1.1 operation information

The items in the operation information show the current operation information of the inverter. The following table explains each item in detail.

RunInfo	Introduction
Vdc	Inverter input voltage (V).

Figure8-3 The meaning of main interface parameters

lpv	Inverter input current (A).		
Ppv	Inverter input power (W).		
Vgrid	Inverter current Grid input voltage (V)		
Pgrid	Inverter current Grid input power (W)		
State_AC	Inverter current Grid input situation		
Fout	Inverter output current frequency (Hz).		
lu	Inverter output U phase current (A).		
lv	Inverter output V phase current (A).		
Iw	Inverter output W phase current (A).		
Temp	Inverter radiator's temperature($^{\circ}\mathbb{C}$).		
ErrCode	Inverter current fault mode.		
StonCode	Stop code, can check the reason of inverter shut down most		
StopCode	recently.		
S-Mode	Start and stop mode.		
D-Mode	Protection mode against well dry out.		
OF-F	Water overflow alarm function optional in Solar pump system		
OF-F	storage device.		
Run/Stop	run /stop status.		
GPRS	The connecting situation of inverter's GPRS.		
ESC	Return to the previous menu.		

8.3.1.2 Basic Information

InverterInfo, shows basic information of inverter, please refer to the figure below.

Figure 8-4 Basic Information Details

Inverter Info	Explain
LCD-Ver	Version information of LCD program.

DSP-Ver	Version information of DSP program.
	Site number of network node of inverter, when communicate
SiteNum	with RS485. Default value is 10. If modifiable, please refer
	to"8.3.4.4Site Number Set".
SN	Series number of inverter.
Ту	Type of inverter.
ESC	Return to the previous menu

8.3.1.3 Pump Information

Pump information item show the basic information of pump.

Figure	8-5	Pump	information	description
rigule	0-0	Fump	mormation	description

Pump Info	Description	Remark
		The rated head, rated flow
		and rated speed in the
Hpump	Pump running lift head (m)	setting menu must be set first;
		otherwise, they all appear to
		be zero.
Onumn	Pump current water flow	
Qpump	(m3/h)	
npump	Pump current running speed	
	(r/m)	
Pout	Pump current power (W)	
Vday	Pump daily water output on	
	that day (m3)	
Vtol	Pump total water output	
	(m3)	
ESC	Return to the previous menu	

8.3.1.4 Statistic Information

Statistic Information, statistic of the totally running time and power generation

of inverter. Please refer to figure below

Table 8-6 Detailed statistic data

Statistic	Description
RunT-D	Inverter daily running duration. This figure will be reset when
	recharged.
RunT-T	Accumulative running duration
E-Day	Daily power inverted. This figure will be reset when recharged.
E-Tot	Accumulative power inverted
ESC	Return to the previous menu

8.3.1.5 Fault Inquiry

Fault Inquiry, to inquiry current and historic malfunction.

Table8-7 Fault inquiry

Fault Inquiry	Explain
Current Fault	Current fault inquiry
History Fault	History fault inquiry
ESC	Return to the previous menu.

8.3.2 Setting information Item Description

Setting information items are all under the parameter setting menu, including setting of scheduled down time, DSP parameter setting, water pump information, site number setting, zero clearing point information, zero clearing fault information, password setting and language setting.

"Figure 8-2 LCD Menu Block Diagram 1" and "Figure 8-3 LCD menu block Diagram 2" list the parameter Settings and the locations of all settable information items under this menu. The following will give a detailed introduction to each setting item.

8.3.2.1 Setting of regular stop time

This setting item is used to set the fixed stop time of the inverter, which is convenient for users to set according to their needs and make the inverter stop itself within the set time.

Table 8-9 Description of regular downtime setting

Timed shutdown information	Description	Note
Time	The inverter will stop automatically in minutes after reaching this time (Minutes)。	

8.3.2.2 DSP parameter setting

Used for setting key parameters of solar pump inverter system.

Table 8-10 DESCRIPTION of DSP parameter setting

DSP Parameter	Description	
Setting Information	Description	
	Motor overload current protection value, refer to the	
lmatar	water pump motor nameplate to set this parameter, it is	
iniotor	recommended to be the same as 1.2 times the motor	
	rated current value.	

Im-Rate	Motor rated current (this parameter is only valid for
	single-phase pump motor parameter detection, and the
	setting value is recommended to be 60% of nominal rated
	current of load pump).
	Dry protection power, which shall be reset when the load
	power rating is lower than Solar pumping inverter.
D-power	Recommended value is 40% of the rated output power of
	Inverter. For example, the D-Power of 2.2kW pump is
	880w.
	Dry out recovery time, under auto dry out mode, after the
D time	warning of dry out and inverter shut down, the duration
D-time	from shut down to restart. Default value is 30. Default
	duration is 30 minutes.
StopFred	Stop frequency (Hz). Setting principle is stop frequency
Stopi req	when minimum flow is output.
E-Limit	Frequency limit, the maximum frequency that the inverter
	can output. the default value is "50Hz"or"60Hz"
	For selection of load. This figure differs by different
Load	pump. When the load is set to UX/50Hz or UX/60Hz, use
Load	it in conjunction with the "Rated Voltage" in the DSP
	parameter Settings.
	For choose the dry out protection mode. When water
D-mode	sensor is applied, dry protection mode should be set to
	detect dry protection. Default is "DETECT".
	For choose over flow warning function. Default is no
OF-F	overflow warning. If you want to use this function, please
	set to "on". Default is "OFF".

OF-Time	For choose over flow warning function. Over flow
	recovery time, after the warning of over flow and inverter
	shut down, the duration from shut down to restart.
	Default value is 30. Default duration is 30 minutes.
	If water output is abnormal, and caused by reversed
M-Mode	motor phase sequence, you can try to reset this model
	from "REV" to "FWD". Default is "FWD".
	This value represents the operation mode of the inverter:
	"economy" : the inverter is in economical mode,
	automatic selection system based on photovoltaic energy
	grid energy intervention; "Reliable" : the inverter is in a
	reliable mode, the system detects the grid input and uses
	the grid energy to ensure the maximum frequency
	operation of the inverter; "Group control" : the inverter is
DebugMod	in the group control mode, and the inverter runs as a
	slave; "3" : The inverter is in the motor parameter
	detection mode (this mode is set by default when the
	single-phase pump inverter is delivered from the factory.
	After the motor parameter detection is completed, the
	debugging mode will automatically switch to 0. If other
	modes need to be switched, manual switch will be
	needed again).
	When the economic mode is selected, when the
	operating frequency is lower than the access frequency,
Facc	the power grid is connected to ensure the maximum
	power operation of the inverter. (This parameter setting
	value must be greater than stop frequency)

Pexit	When the economic mode is selected, the photovoltaic
	power is higher than the exit power, and the grid exit
	ensures that the inverter only uses photovoltaic energy.
	(This parameter setting is recommended to be about 75%
	of the load pump power, and the minimum power change
	is 100W.)
S_Out	Set the inverter output load type, select "0", the inverter
	is a three-phase output; When "1" is selected, the
	inverter is single-phase output.
U-Rated	Rated output voltage, adjustable range of 130V~240V.
	With the load set to UX/50Hz or UX/60Hz, UX is the rated
	voltage.
ESC	Return to the previous menu.

When the user selects solar pump inverter, the parameters in the menu of "DSP Parameter Setting" have been set by factory, and these parameters cannot be changed easily.

• When the output selection is changed, the inverter must be powered off. It can only be started up again after the inverter is completely powered off. Otherwise, the inverter and water pump may be damaged.

•When the output of the inverter switches from three-phase to single-phase, it runs for the first time. The debugging mode must be changed from "Reliable" to

"3" before starting up and running. If the output is switched from single-phase to three-phase, this step is not required.

8.3.2.3 Pump Information Setting

Used to set relevant parameters of water pump information.

Table 8-11 Description of water pump information setting (user sets according to water pump parameters)

Pump Information Setting	Description	Note
H_rate	Set pump rated lift head (m)	According to pump nameplate input Settings
Q_rate	Set pump rated water flow (m3/h)	
n_rate	Set pump rated speed (r/m)	

8.3.2.4 Site Number Set

SiteNum Set, for remote RS485 communication use. Please refer to the figure below.

Table 8-12 SiteNum Set Description
Site Number Set	Description	Note
SiteNum	Inverter network site number	The maximum value is 64.

8.3.2.5 Statistical Data Clear

Clear S-Data, to clear inverter's total running time and cumulative output power.

Table 8-12 Statistical Data Clear Description

Clear generation info.	Description	Note
Yes	Choose yes, clear the information of the inverter output power	
No	Return to the previous menu.	

8.3.2.6. Historical Malfunction Clear

Clear F-Data, to clear historical malfunction record.

Table 8-13 Historica	I malfunction clear	information	description
----------------------	---------------------	-------------	-------------

Historical Malfunction Clear	Description	Note
Yes	The option is to immediately clear the inverter historical Fault.	
No	Return to the previous menu.	

8.3.2.7. Password Setting

Password Setting, to set the password to enter set menu.

Table 8-14 Password setting description

Password set	Description	Note
New Password	Set the password to enter the Settings menu.	The default initial value for a two-digit password is 00, and the maximum value can be set to 99.

8.3.2.8. Language Setting

Language setting, to set the man-machine interface language category.

Table 8-15 Language set descri

Language set	Description	Note
Chinese	After confirming the setting, the LCD display language of the inverter is set to Chinese.	
English	After confirming the setting, the LCD display language of the inverter is set to English.	

8.3.2.9. factory data reset

Restore factory Settings information	Description	Note
factory data reset	After confirmation, select "Yes" or "No" to resume factory	

Settings	

Used to restore factory default configuration.

Table 8-17 Restore factory Settings setting instructions

8.3.3 Information inquiry

In the main interface, press the up and down keys to directly query the information displayed in the main interface, and press the "ENTER" key to ENTER the main menu, to query the detailed parameters of the inverter, and to set some parameters and functions.

The inquiry operation is shown here using the inquiry fault code as an example.

1) Firstly, located the "fault code" : According to the "Figure 8-2 LCD menu

Block Diagram 1", the fault code is under the operation Information menu;

2) "Operation information" is the inquiry information item. The specific inquiry

operation is as follows

Keys operation and LCD display

Description

Note !

All query information items can be inquired according to the above operation, and

the fault information in the operation information is only illustrated here.

Please refer to "8.3.1 Description of Inquiry Information Item" for introduction

of inquiry information item.

8.3.4 Parameter Setting

Enter the correct password before entering the parameter setting interface. After entering the parameter setting menu, you can set the configurable information items given in **"8.3.2 Setting Information Item Description"**. Here, the setting operation is demonstrated only with the example of " D-power Setting ".

 Position " D-power Setting " : According to the block Diagram of "Figure 8-2 LCD Menu", " D-power Setting " is in the "Parameter Setting" menu;
 D-power Setting " is the setting information item. The specific setting steps are as follows:

Keys operation and	LCD display	Description
Main Menu		1. Press 🥯 on the main
	RunInfo	interface to enter the main
	InverterInfo	menu, and the cursor fails on
	Settings	the operation information
🔘 or 🔍	Fault Inquiry	item;
		2. Press the up key or down
Ċ	Password ** ESC	key to find the parameter
Ţ		setting item;
Password *0 ESC		3. Press 🥯 to enter
		parameter setting. Enter the
		correct two-digit password.
		* The initial default password
		is 00.

Password *0 ESC	T-Limit Para Set	1. Enter the correct password to enter the setting menu, and the cursor falls on the timed
or O	T-Limit Para Set	downtime item;2. Press Of to select the
	Imotor OA D-Power OW	setting item of D-power; 3. After entering the D-power
or O	ImotorOAD-Power300 W	setting, set the D-power according to the confirmation;
	YES NO	4. Press the up key or down key to switch the power size of
or V	Imotor OA D-Power 300W	to 100W;
	Ppv OW R_Mode MPPT	confirm again whether to replace the power after confirmation;
		6. Select "Yes" and set the dry power, as shown in the left
		picture. Set the D-power from 0 to 300W;

return to the main menu.

Note ! All information items given in **"8.3.3 Setting Information Item Description"** can be set according to the above operation, which is explained here only by

taking the setting of D-power as an example.

8.4 Malfunction Description

If communication failure appears, the below interface will appear.

Comm Error

This interface will appear, and Fault red led flickers to show malfunction, this means internal communication malfunction is appear.

Display show malfunction, fault LED lights up, shows inverter malfunction or stop. Press "UP" or "DOWN" to inquire current malfunction, choose "ESC", press "ENTER" to quit. (When LCD screen show fault code, and fault LED lights up, which mean inverter fault or stop. Press "UP" or "DOWN" to inquire current fault, choose "ESC", press "ENTER" to quit.)

Note!

Malfunction manual reset function: when the machine breakdown with malfunction, can long press "ON/OFF" button, the machine can automatically restart immediately. When the machine is displayed Fault112, no such reset function.

The following table shows the possible fault codes and status names of the inverter.

LCD displays fault code and status code	Name of malfunction and condition
Fault 100	Drive over current fault
State 101	PV Array under voltage
Fault 102	Bus over-voltage
Fault 103	Retention (bus equalizing fault)
Fault 104	Radiator over heating
Fault 105	Output over-load
Fault 106	Array over-voltage
Fault 107	Array over-current
Fault 108	Inverter AC Output over-current
State109	Dry alarm
State110	Weak sunshine
Fault 111	Temperature sensor fault
Fault 112	Short circuit fault (Nonrecoverable)

Table 8-16 Fault codes and status names

Fault 113	Initialization error from the machine
State 114	Overflow alarm
Fault 115	Output phase lose
Fault 202	Grid power over current
Fault 203	Bus voltage under voltage
Fault 204	Grid phase lose

9 Malfunction and Troubleshooting

9.1 Troubleshooting

Once malfunction or stop condition appears, the malfunction LED will lighten up, LCD will display current malfunction or stop condition, current malfunction will be recorded by the system for later inquire. Please refer to the form below which covers the fault and troubleshooting.

Condition	Condition	Phenomena	Cause	Troubleshooting
code	Name		value	
State 101	PV Array undervoltage	Inverter shutdown when the fault appeared and will automatically restart after it disappear.	Out put energy from array changes.	Please check the input voltage from array and make sure this voltage inside inverter input voltage range. Note: In cloudy days, morning, or down, this situation is not malfunction.
State 109	Dry alarm	Inverter shut down until the water level recover or protection recover time is up, the machine	Water level of source is lower than low-level water level sensor, even lower	 Please check the water level, if the water level is ok, please check if there are air inside pump. Please check the position of water

Table9-1 Shutdown status and troubleshooting

		will restart	than inlet	level sensor.
		automatically.	of pump.	
		Inverter		Usually appears in
		shutdown.		early morning, dusk
		When		and cloudy days.
_	Weak	malfunction	Array	This situation is aim
State 110	sunshine	disappear,	output low.	to protect the motor
		inverter can		of pump and
		restart		lengthen the lifetime.
		automatic.		
		Inverter shut		If this situation
		down until the	Water level	appears more than
		water level	in	once, please check
		recover or	container	onsite and set the
State 114	Overflow	protection	higher than	water level sensor at
	alarm	recover time is	high-end	a proper height.
		up, the machine	level	
		will restart	sensor.	
		automatically.		

Table9-2 Malfunction and troubleshooting

Conditio	Condition	Phenomena	Cause value	Troubleshootin
n code	Name			g
Fault105	Output over-load	Inverter shutdown and will restart automatically after the fault disappears.	Load higher than rated output power of inverter.	 Please make sure the system is proper designed. The power of pump motor should not be larger than inverter output. Make sure that the pump is working in the well range of head and flow. Please refer to "8.3.2.3 DSP Parameter setting" and "8.3.4 Parameter setting", increase the

				value of
				Imotor.
Fault106	Array over-voltage	Inverter shutdown and will restart automatically after malfunction disappears.	DC input voltage higher than maximum input voltage of inverter.	Please check maximum output voltage of array and make sure this voltage is below inverter maximum input voltage.
Fault107	Array over-current	Inverter shutdown and will restart automatically after the fault disappears.	Input current of inverter higher than rated maximum value.	If this happen, please contact SUPPLIER.
Fault108	Inverter AC output over current	Inverter shutdown and will restart automatically after the fault disappears.	 Power capacity of pump motor is higher than rated output. Pump motor locked-rotor , or 	 Please inspect whether pump motor is normal. Please inspect whether pipeline system is in

			damaged.	accordance
			3. Pipe	with water
			system	pump or not.
			design is not	3. If this
			reasonable.	happen
				frequently,
				please contact
				SUPPLIER.
			Sensor not	If this happen
Foult111	Temperature	Inverter shut	connects	frequently,
Faultin	sensor fault	down.	proper or	please contact
			damaged.	SUPPLIER.
			1.The	1. Please
			inverter	check if there
			output	is short circuit
	Short circuit	Inverter	appears	in output wires.
	fault	down, can not	interphase	
	(Nonrecoverable	recover the	short circuit,	2. Whether the
)	fault, unless	to the	pump motor is
Fault112		the inverter is	ground fault,	damaged.
		new power,	missing	
		otherwise the	items and a	
		system will	short period	
		not start.	of time	
			multiple	
			overcurrent	
			fault;	

			2. Inverter hardware circuit damage.	
Fault115	Output phase lose	Inverter shutdown and will restart automatically after the fault disappears.	Phase loss in inverter output.	 Please check if the output wires are proper connected and fixed. If this happen frequently, please contact the supplier.
Fault 202	Grid power over current	Inverter stop working, stop state disappear, system will start automatically	1,Pump is short circuit or blocked. 2,hardware problem	1,check pump wiring, and chek if pump can working normally. 2,Check if inverter output is norma.

Fault 203	Bus voltage undervoltage	the inverter shut down, the system can start itself after the shutdown state disappears.	Grid power undervoltage , or PV array low voltage, or hardware fault.	Disconnect with AC input, PV input, ensure inverter no voltage, use multimeter to check the voltage of grid power and PV array separately.
Fault 204	Grid power phase lose	Inverter stop working, stop state disappear, system will start automaticall y	A phase or two-phase output cable of grid power is not well connected with inverter. The grid power connection is loose and falls off.	Disconnect the grid power and PV input switch to ensure that there is no voltage at the input of the inverter, and check the wiring at the input side of the grid

9.2 Maintenance

Please check and ensure the inverter is not charged with electricity before any maintenance.

A routine examination must be done every half year:

- Check the inverter for damaged or with deformation.
- Check whether there is abnormal noise when inverter is running.
- Check whether the parameters and time settings are correct.

Every half to one year, a routine examination should be done:

Warning !

Please check and make sure the inverter is not charged with electricity before any maintain work below.

- Check humidity and dust of inverter surrounding environment, if have too much dust, clean the inverter.
- Check the inverter cable connection is loose, if loose, tightening again according to the connection method of wire.
- Check whether the cable is damaged, especially the metal surface contact surface is cut marks or not.

9.3 Contact Customer Service

In order to provide faster and better service, please provide us with information below:

- Model of Inverter
- Series number of inverter
- Malfunction name and time
- Malfunction description

10 Appendix A

Technical Data

Model	JNP2K2L-V6	JNP3KL-V6	JNP3K7L-V6	JNP4KL-V6
PV input parameter				
Maximum DC		480	/dc	
input voltage				
Recommended				
MPPT voltage		200~48	50Vdc	
range		r		r
Maximum DC	15A	30A	30A	30A
input current				
MPPTmaximu		99	%	
m efficiency	33%			
Number of		1		
input lines		ľ		
Utility/diesel in	put parameters			
VDC		198-264\	/ac,1PH	
frequency		50Hz/60H	Hz(±3%)	
AC output side				
Maximum		3kW(3PH) or	3.7kW(3PH) or	4kW(3PH) or
matching	2.2kW	2 2kW(1PH)	2 2kW(1PH)	2 2kW(1PH)
motor power		2.200(1111)	2.200(1111)	2.2800(1111)
Rated output				
voltage				
Output	0~50/60Hz			

frequency						
range						
maximum	154	164	170	184		
current output	15A 16A 17A 18A					
system						
IP Grade		IP6	5			
Operating						
ambient		25 6	`∩ °∩			
temperature		-25~0				
range						
type of cooling	natural cooling					
display	LCD/LED					
communication	RS485/GPRS					
altitude	3000m, downscaling operation above 3000m					
noise	<50dB					
meet a	EN	1 50178 IEC/EN 6	S2109-1.1EC6100	<u> </u>		
criterion		N 50178, IEC/EN 0	52109-1,1EC01000	J		
Specification		278/270/4	25(mm)			
size (W/H/D)	278/370/125(mm)					
weight	11.8kg					

11 Appendix B

11.1 Quality Assurance

The product malfunction in the warranty period, Supplier be free to repair or replace products. The warranty period take the contract as a standard.

Evidence

During the warranty period, customers should provide the invoices for the purchase of products and date. And the trademarks of the products should be clearly visible. Otherwise we do have the right not to assume quality assurance.

Conditions

- The replaced products should be returned to supplier.
- Supllier should be given reasonable time to repair the malfunctioning equipment.

Exemption from liability

The company has the right not to carry out quality assurance in the following:

- Transport damage
- Incorrect installation, modification and usage.
- Overall, components have been beyond the warranty period.
- Bad operating environment beyond the descriptions in this manual.
- Non company services, personnel to repair, replacement or demolition cause machine damage.
- Damage caused by abnormal natural environment.

If the product size and parameters have changed, the latest information given by the company shall prevail without notice.

11.2 Contact Us

If you have any question about Solar Pump Inverter, please contact Supplier.